
Introduction to Software
Verification

Orna Grumberg

Lectures Material
winter 2017-18

Lecture 1

3

• Safety-critical applications:
– Air-traffic controllers
– Medical equipment
– Cars

Bugs are unacceptable!

• Bugs found in later stages of design are expensive,
e.g. Intel’s Pentium bug in floating-point division

• Testing does not provide full coverage

Why (formal) Verification?

4

The goal of the course:
Formal Verification

Given
• A (model of) hardware or software system

and
• a formal specification
does the system satisfy the specification?

Not decidable!

5

Formal Verification
Solutions:
• “Program correctness”:

Provide non-automated verification
methods

• “Automatic verification / Model Checking”:
restrict the problem to a decidable one:
– Finite-state reactive systems
– Propositional temporal logics

Specifications

• Should be given for a system by the
designer, developer, programmer, user

• Examples:
– Does the program always terminate?

– Does the program compute correctly
multiplication of its inputs?

6

Specifications

• Additional examples:
– When we press a sequence of buttons on the

control panel of an airplane / microwave -
do we get the desired result?

– When we deposit money – does it get to our
account?

– Can a user access data only if he has the
appropriate authorization?

7

Verification tools

Are developed and used in

• Hardware industry: Intel, IBM, Cadence,
Mellanox, …

• Software industry: Microsoft, NASA,
Amazon, Facebook…

• Universities
8

Part 1 of the course

Program Correctness
• Non-automated
• Verifies program with possibly

infinite number of states
• Refers to the programs as

input-output transformation

9

Ingredients for Formal Verification

1. Specification language
• With formal semantics

2. Programming language
• with formal semantics

3. Proof rules
• For proving “Program P has the property ”

Requirements from the proof rules

• Soundness of the rules: if we were able to
prove correctness of program P w.r.t.
specification  using the proof rules, then
P is correct w.r.t. 

• Completeness of the rules: if P is correct
w.r.t. specification , then our proof rules
can prove it

We handle:

• Deterministic programs
– Exactly one computation for every input
– At most one output for each input

• Properties
– Partial correctness
– Termination
– Total Correctness

Some notations

• Program variables: x̅	= (x1,…,xn)

• A state of the program  is a function
from program variables to their domains

• The set of program states is defined by:
D1 …  Dn  {}
Where Di is the domain of variable xi

Program states: Examples

• A program with integer variable x, Boolean
variable b
– States: (5, F), (-17, T)

• Elevator on 3 floors:
elev_at  {1, 2, 3}
on_floor1, on_floor2, on_floor3: Boolean
in_elev1, in_elev2, in_elev3: Boolean
direction  {up, down}, door  {open, close}
– State: (2, F,T,T, T,T,F, up, close)

Defining the Specification

Specification is a pair <q1(x̅), q2(x̅)>	
where:

• q1(x̅), q2(x̅)	 are first order formulas over
program variables

• q1(x̅) describes a condition holding before the
execution of the program

• q2(x̅) describes a condition holding
at the end of the execution of the program

Examples
Specification example

• < (x0  y  0) , (z = x/y  z 0) >

A program with x, yR, bT,F

States: (5, 5.0, T), (7, 3.111, F)

q1(x, y, b) = x  0  b

q2(x, y, b) = x+y  0   b

Computations of Programs

• (P,) denotes a computation of
program P from state 

• (P,) is a finite (1, …, k) or infinite
(1,2,…) sequence of states where:
– 1 = 
– i+1 is a result of applying an action from

the program on i

• This definition is not a full definition

More notations
•  - bottom : the undefined value

• val() denotes the final state of
computation  (if exists)
– val() = k if  = (1, …, k)
– val() =  if  = (1,2,…)

•  is an infinite computation

•   q(x̅)	if q(x̅)	is true when free variables
in q are replaced with matching values in 

• Important remark:
̸	q(x̅)	for every q(x̅)		(even	̸	true)

• Example of formulas and their meaning:
q(y)	=	x(y|x  2| ̵x)				where x,y are
naturals
– For a state  (x)=1,  (y)=2,  (z)=1
  q(y)	since	x(2|x	 2| ̵x)	is	true

Partial Correctness
• A program P is partially correct with respect

to specification <q1(x̅), q2(x̅)> iff for every
computation  of P from an initial point of P,
and for every state 0 :
if
– the computation starts from state 0 which

satisfies q1(x̅)	and
– the computation terminates
then
– q2(x̅) holds at the end of the computation

Partial Correctness
• For every computation  and every

state 0 :

(0  q1(x̅) and val((P, 0))	≠	) 
val((P, 0))  q2(x̅)

• Notation: {q1}P{q2}

Total Correctness
• A program P is totally correct with respect to

specification <q1(x̅), q2(x̅)> iff for every
computation  of P from an initial point of P,
and for every state 0 :
if
– the computation starts from state 0 which

satisfies q1(x̅)	
then
– the computation terminates, and
– q2(x̅) holds at the end of the computation

Total Correctness

• For every computation  and every
state 0 :

0  q1(x̅)  val((P, 0))≠ and
val((P, 0))  q2(x̅)

• Notation: <q1>P<q2>

How do we write the specification:
“P terminates if the initial state satisfies
q1 “

Separation Lemma

• For every program P and specification
<q1,q2>:

 <q1>P<q2>
if and only if

 {q1}P{q2}		and	 <q1>P<true>

Examples

• Which programs satisfy {true}P{false} ?

• Which programs satisfy <true>P<false> ?

Logical Variables in Specifications

Example 1:
Specify a program with a single variable x
whose value at the end of the computation is
twice its value at the beginning

Logical Variables in Specifications

Solution: add fresh variables which are
– not part of the program and therefore
– their value does not change during the execution

of the program

These variables are called logical variables

Convention: We use logical variable X to
preserve the value of variable x

Logical Variables in Specifications

Example 2:
Program which returns in variable z the
multiplication of variables x and y

Convention:
Assertions q1 ,q2 are now defined over x̅ that

includes program variables as well as logical
variables

