Introduction to Software Verification

Orna Grumberg

Lectures Material winter 2017-18

Lecture 1

Why (formal) Verification?

- Safety-critical applications:
 - Air-traffic controllers
 - Medical equipment
 - Cars

Bugs are unacceptable!

- Bugs found in later stages of design are expensive,
 e.g. Intel's Pentium bug in floating-point division
- Testing does not provide full coverage

The goal of the course: Formal Verification

Given

- A (model of) hardware or software system and
- a formal specification

does the system satisfy the specification?

Not decidable!

Formal Verification

Solutions:

- "Program correctness":
 Provide non-automated verification methods
- "Automatic verification / Model Checking": restrict the problem to a decidable one:
 - Finite-state reactive systems
 - Propositional temporal logics

Specifications

 Should be given for a system by the designer, developer, programmer, user

Examples:

- Does the program always terminate?
- Does the program compute correctly multiplication of its inputs?

Specifications

- Additional examples:
 - When we press a sequence of buttons on the control panel of an airplane / microwave do we get the desired result?
 - When we deposit money does it get to our account?
 - Can a user access data only if he has the appropriate authorization?

Verification tools

Are developed and used in

- Hardware industry: Intel, IBM, Cadence, Mellanox, ...
- Software industry: Microsoft, NASA, Amazon, Facebook...
- Universities

Part 1 of the course

Program Correctness

- Non-automated
- Verifies program with possibly infinite number of states
- Refers to the programs as input-output transformation

Ingredients for Formal Verification

- 1. Specification language
 - With formal semantics
- 2. Programming language
 - with formal semantics
- 3. Proof rules
 - For proving "Program P has the property φ "

Requirements from the proof rules

- Soundness of the rules: if we were able to prove correctness of program P w.r.t. specification φ using the proof rules, then P is correct w.r.t. φ
- Completeness of the rules: if P is correct w.r.t. specification φ , then our proof rules can prove it

We handle:

- Deterministic programs
 - Exactly one computation for every input
 - At most one output for each input
- Properties
 - Partial correctness
 - Termination
 - Total Correctness

Some notations

- Program variables: $\bar{x} = (x_1,...,x_n)$
- A state of the program σ is a function from program variables to their domains
- The set of program states is defined by: $D_1 \times ... \times D_n \cup \{\bot\}$ Where D_i is the domain of variable x_i

Program states: Examples

A program with integer variable x, Boolean variable b

```
- States: (5, F), (-17, T)
```

Elevator on 3 floors:
elev_at ∈ {1, 2, 3}
on_floor1, on_floor2, on_floor3: Boolean
in_elev1, in_elev2, in_elev3: Boolean
direction ∈ {up, down}, door ∈ {open, close}
– State: (2, F,T,T, T,T,F, up, close)

Defining the Specification

Specification is a pair $< q_1(\bar{x}), q_2(\bar{x})>$ where:

- $q_1(\bar{x}), q_2(\bar{x})$ are first order formulas over program variables
- $q_1(\bar{x})$ describes a condition holding before the execution of the program
- $q_2(\bar{x})$ describes a condition holding at the end of the execution of the program

Examples

Specification example

•
$$(x \ge 0 \land y > 0)$$
, $(z = x/y \land z \ge 0)$

A program with $x \in \mathbb{N}$, $y \in \mathbb{R}$, $b \in \{T,F\}$

States: (5, 5.0, T), (7, 3.111, F)

$$q_1(x, y, b) = x > 0 \wedge b$$

$$q_2(x, y, b) = x+y > 0 \land \neg b$$

Computations of Programs

- $\pi(P,\sigma)$ denotes a computation of program P from state σ
- $\pi(P,\sigma)$ is a finite $(\sigma_1, ..., \sigma_k)$ or infinite $(\sigma_1, \sigma_2, ...)$ sequence of states where:
 - $-\sigma_1 = \sigma$
 - $-\,\sigma_{\rm i+1}$ is a result of applying an action from the program on $\sigma_{\rm i}$
- This definition is not a full definition

More notations

- 1 bottom: the undefined value
- $val(\pi)$ denotes the final state of computation π (if exists)
 - $-\operatorname{val}(\pi) = \sigma_{k}$ if $\pi = (\sigma_{1}, ..., \sigma_{k})$
 - $-\operatorname{val}(\pi) = \bot \quad \text{if } \pi = (\sigma_1, \sigma_2, ...)$
 - π is an infinite computation
- $\sigma \models q(\bar{x})$ if $q(\bar{x})$ is true when free variables in q are replaced with matching values in σ

• Important remark: $\bot \not\models q(\bar{x})$ for every $q(\bar{x})$ (even $\bot \not\models true$)

- Example of formulas and their meaning: $q(y) = \forall x(y|x \lor 2\nmid x)$ where x,y are naturals
 - For a state $\sigma(x)=1$, $\sigma(y)=2$, $\sigma(z)=1$ $\sigma \models q(y)$ since $\forall x(2|x \lor 2|x)$ is true

Partial Correctness

- A program P is partially correct with respect to specification $<\mathbf{q}_1(\bar{\mathbf{x}}), \mathbf{q}_2(\bar{\mathbf{x}})>$ iff for every computation π of P from an initial point of P, and for every state σ_0 : if
 - the computation starts from state σ_0 which satisfies $q_1(\bar{x})$ and
 - the computation terminates

then

 $-q_2(\bar{x})$ holds at the end of the computation

Partial Correctness

• For every computation π and every state σ_0 :

$$(\sigma_0 \models q_1(\bar{x}) \text{ and } val(\pi(P, \sigma_0)) \neq \bot) \Rightarrow$$

 $val(\pi(P, \sigma_0)) \models q_2(\bar{x})$

• Notation: $\{q_1\}P\{q_2\}$

Total Correctness

- A program P is totally correct with respect to specification $<\mathbf{q_1}(\bar{\mathbf{x}}), \mathbf{q_2}(\bar{\mathbf{x}})>$ iff for every computation π of P from an initial point of P, and for every state σ_0 : if
 - the computation starts from state σ_0 which satisfies $q_1(\bar{x})$

then

- the computation terminates, and
- $-q_2(\bar{x})$ holds at the end of the computation

Total Correctness

• For every computation π and every state σ_0 :

$$\sigma_0 \vDash q_1(\bar{x}) \Rightarrow val(\pi(P, \sigma_0)) \neq \perp and$$

$$val(\pi(P, \sigma_0)) \vDash q_2(\bar{x})$$

• Notation: $\langle q_1 \rangle P \langle q_2 \rangle$

How do we write the specification: "P terminates if the initial state satisfies q_1 "

Separation Lemma

For every program P and specification
 <q₁,q₂>:

```
\models \langle q_1 \rangle P \langle q_2 \rangle
if and only if
\models \{q_1\} P \{q_2\} \text{ and } \models \langle q_1 \rangle P \langle \text{true} \rangle
```

Examples

Which programs satisfy {true}P{false} ?

Which programs satisfy <true>P<false> ?

Logical Variables in Specifications

Example 1:

Specify a program with a single variable x whose value at the end of the computation is twice its value at the beginning

Logical Variables in Specifications

Solution: add fresh variables which are

- not part of the program and therefore
- their value does not change during the execution of the program

These variables are called logical variables

Convention: We use logical variable X to preserve the value of variable x

Logical Variables in Specifications

Example 2:

Program which returns in variable z the multiplication of variables x and y

Convention:

Assertions q_1 , q_2 are now defined over $\bar{\mathbf{x}}$ that includes program variables as well as logical variables