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Other solutions to the state-
explosion problem

Small models replace the full, concrete 
model:

• Abstraction
• Compositional verification
• Partial order reduction
• Symmetry
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Abstraction preserving ACTL/ACTL*

We use Existential Abstraction in which the 
abstract model is an over-approximation of 
the concrete model:

– The abstract model has more behaviors
– But no concrete behavior is lost

• Every ACTL/ACTL* property true in the 
abstract model is also true in the concrete 
model
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Existential Abstraction

M

Mh

Given an abstraction function h : S  Sh, the 
concrete states are grouped and mapped into 
abstract states :

h h h

M  Mh
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How to define 
an abstract model:

Given M and ,   choose
• Sh - a set of abstract states

• AP – a set of atomic propositions that label 
concrete and abstract states

• h : S  Sh - a mapping from S on Sh that 
satisfies:

h(s) = h(t)  only if  L(s)=L(t)

• h is called appropriate w.r.t. AP
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The abstract model
Mh = (Sh, Ih, Rh, Lh)

• sh  Ih  sI :  h(s) = sh

• (sh,th)  Rh 
s,t [ h(s) = sh  h(t) = th  (s,t)R ]

• Lh(sh) = L(s)   for some s where h(s) = sh

This is an exact abstraction
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An approximated abstraction
(an approximation ) 

• sh  Ih  sI :  h(s) = sh

• (sh,th)  Rh 
s,t [ h(s) = sh  h(t) = th  (s,t)R ]

• Lh is as before

Notation: 
Mr – reduced (exact)    Mh - approximated
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Depending on h and the size of M, 
Mh (I.e.  Ih, Rh )  can be built using:

 BDDs or  

 SAT solver or  

 Theorem prover (SMT)

We later demonstrate such constructions for 

specific types of abstractions
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Predicate Abstraction

• Given a program over variables V
• Predicate Pi is a first-order atomic 

formula over V
Examples:   x+y < z2 ,   x=5

• Choose: AP = { P1,…,Pk } that includes
– the atomic formulas in the property  and
– conditions in  if, while statements of the 

program



Predicate Abstraction - Example

while (x1) {
……
if (y=2) { …. }
……

}

=AFG(x>y)

AP={x>y,x1,y=2}
11



12

• Labeling of concrete states:

L(s) = { Pi |  s |= Pi }

Predicate Abstraction
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Example (concrete model)
Program over natural variables x, y
S = N x N
AP = { P1, P2, P3 } where 

P1 = x≤1 ,  P2 = x>y ,  P3 = y=2
AP = { x≤1 , x>y , y=2 }

L((0,0)) = L((1,1)) = L(0,1)) = { P1 }
L((0,2)) = L((1,2)) = { P1, P3 }
L((2,3)) = 
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Abstract model - Definition

• Abstract states are defined over Boolean 
variables { B1,...,Bk }:
Sh  { 0,1 }k

• h(s) = sh 
for all  1jk : [ s |= Pj  sh |= Bj ]

• Lh(sh) = {  Pj | sh |=  Bj }

• Is h appropriate for AP?
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Example (concrete model)
Program over natural variables x, y
S = N x N
AP = { P1, P2, P3 } where 

P1 = x≤1 ,  P2 = x>y ,  P3 = y=2
AP = { x≤1 , x>y , y=2 }

L((0,0)) = L((1,1)) = L(0,1)) = { P1 }
L((0,2)) = L((1,2)) = { P1, P3 }
L((2,3)) = 
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Sh  { 0,1 }3

h((0,0)) = h((1,1)) = h(0,1)) = (1,0,0)
h((0,2)) = h((1,2)) = (1,0,1)
No concrete state is mapped to (1,1,1)

Lh((1,0,0)) = { P1 }
Lh((1,0,1)) = { P1, P3 }

The concrete state and its abstract state are 
labeled identically

Example – (abstract model)
AP={P1=(x≤1),P2=(x>y),P3=(y=2)}
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Computing Rh (same example)

(sh,th)  Rh 
s,t [ h(s) = sh  h(t) = th  (s,t)R ]
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Program with one statement:    x := x+1

( (b1,b2,b3) , (b’1,b’2,b’3) )  Rh 

xyx’y’ [  P1(x,y)  b1 
P2(x,y)  b2 
P3(x,y)  b3 
x’=x+1  y’=y 
P1( x’,y’ )  b’1 
P2( x’,y’ )  b’2 
P3( x’,y’ )  b’3 ] 

Computing Rh (same example)

sh th

h(s)=sh

h(t)=th

R(s,t)

s t
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Depending on h and the size of M, 
Mh (I.e.  Ih, Rh )  can be built using:

 BDDs, if S is finite and not too big

 SAT solver, if S is finite and possibly big

 Theorem prover (SMT), S might be infinite
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Logic preservation Theorem

 Theorem If  is an ACTL/ACTL* 
specification over AP, then

Mh |=   M |= 

 However, the reverse may not be valid.
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Traffic  Light  Example

red

green

yellow

M

Property:
 =AG AF ¬ (state=red)

Abstraction function h 
maps green, yellow to
go.

red

go

Mh

Mh |= M |=  
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Traffic Light Example (Cont)

If the abstract model invalidates a specification, 
the actual model may still satisfy the specification.

 Property:
 =AG AF (state=red)

 M |=  but Mh | 

red

green

yellow

red

go

M Mh
 Spurious Counterexample:

red,go,go, ...
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CounterExample-Guided 
Abstraction-Refinement 

(CEGAR)
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The CEGAR Methodology

Th is not spurious
check spurious
counterexample

Th

stop

Mh |= 

generate
counterexample Th

Mh | 

model check

Mh

generate initial
abstraction

M and 

refinement:
generate new abstraction

Th
is spurious

Mh
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Generating the Initial 
Abstraction

 If we use predicate abstraction then 
predicates are extracted from the 
program’s control flow and the checked 
property

 If we use localization reduction then the 
un-abstracted variables are those 
appearing in the predicates above



Predicate Abstraction - Example

while (true) {
if (reset == 1) { x=y=0; }
else if (x<y) { x=x+1; }
else if (x==y && !(y==2)) { y=y+1; }
else if (x==y) { x=y=0; }

}
=AF(x==y)

AP={reset==1, x<y, x==y, y==2}
26
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Model Check The Abstract Model

Given the abstract model  Mh

 If Mh | , then the model checker generates a 
counterexample trace (Th)

 Most current model checkers generate  paths or 
loops

 Question : is Th spurious?
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Counterexamples
• For AGp it is a path to a state satisfying p
• For AFp it is a infinite path represented by a

path+loop, where all states satisfy p

On the other hand
• For EFp we need to return the whole computation 

tree (the whole model)

• For AX(AGpAGq) we need to return a computation 
tree demonstrating 
EX(EFp EFq)
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Path Counterexample

Assume that we have four abstract states
{1,2,3}   {4,5,6}  
{7,8,9}   {10,11,12}  

Abstract counterexample Th= , , , 
   

therefore, M | Th is not spurious,
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Spurious Path Counterexample

Th is spurious

failure state
The concrete states mapped 
to the failure state are 
partitioned into 3 sets

dead-end bad irrelevant
yes no no
no yes no

states
reachable
out edges

   
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Refining The Abstraction

 Goal : refine h so that the dead-end states 
and bad states do not belong to the same 
abstract state.

 For this example, two possible solutions.
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Refining the abstraction

• Refinement separates dead-end states 
from bad states, thus, eliminating the 
spurious transition from Si-1 to Si

• This can be done, for instance, by adding a 
new predicate to the abstract model and 
building a new, refined abstract model
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Completeness of CEGAR

If M is finite
 Our methodology refines the abstraction 

until either the property is proved or a real 
counterexample is found

 Theorem Given a finite model M and an 
ACTL* specification  whose 
counterexample is either path or loop, our 
algorithm will find a model Ma such that

Ma |=   M |= 
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Conclusion

We presented a framework for 
Counterexample Guided Abstraction 
Refinement (CEGAR)  that

 Automatically constructs an initial abstraction, 
based on the checked property and the system

 If the abstract system contains a spurious 
counterexample then the abstraction is 
automatically refined in order to eliminate the 
counterexample


