
Introduction to Software
Verification

Orna Grumberg

Lectures Material
winter 2017-18

Lecture 13

16.1.18

3

Other solutions to the state-
explosion problem

Small models replace the full, concrete
model:

• Abstraction
• Compositional verification
• Partial order reduction
• Symmetry

4

Abstraction preserving ACTL/ACTL*

We use Existential Abstraction in which the
abstract model is an over-approximation of
the concrete model:

– The abstract model has more behaviors
– But no concrete behavior is lost

• Every ACTL/ACTL* property true in the
abstract model is also true in the concrete
model

5

Existential Abstraction

M

Mh

Given an abstraction function h : S Sh, the
concrete states are grouped and mapped into
abstract states :

h h h

M Mh

6

How to define
an abstract model:

Given M and , choose
• Sh - a set of abstract states

• AP – a set of atomic propositions that label
concrete and abstract states

• h : S Sh - a mapping from S on Sh that
satisfies:

h(s) = h(t) only if L(s)=L(t)

• h is called appropriate w.r.t. AP

7

The abstract model
Mh = (Sh, Ih, Rh, Lh)

• sh Ih sI : h(s) = sh

• (sh,th) Rh
s,t [h(s) = sh h(t) = th (s,t)R]

• Lh(sh) = L(s) for some s where h(s) = sh

This is an exact abstraction

8

An approximated abstraction
(an approximation)

• sh Ih sI : h(s) = sh

• (sh,th) Rh
s,t [h(s) = sh h(t) = th (s,t)R]

• Lh is as before

Notation:
Mr – reduced (exact) Mh - approximated

9

Depending on h and the size of M,
Mh (I.e. Ih, Rh) can be built using:

 BDDs or

 SAT solver or

 Theorem prover (SMT)

We later demonstrate such constructions for

specific types of abstractions

10

Predicate Abstraction

• Given a program over variables V
• Predicate Pi is a first-order atomic

formula over V
Examples: x+y < z2 , x=5

• Choose: AP = { P1,…,Pk } that includes
– the atomic formulas in the property and
– conditions in if, while statements of the

program

Predicate Abstraction - Example

while (x1) {
……
if (y=2) { …. }
……

}

=AFG(x>y)

AP={x>y,x1,y=2}
11

12

• Labeling of concrete states:

L(s) = { Pi | s |= Pi }

Predicate Abstraction

13

Example (concrete model)
Program over natural variables x, y
S = N x N
AP = { P1, P2, P3 } where

P1 = x≤1 , P2 = x>y , P3 = y=2
AP = { x≤1 , x>y , y=2 }

L((0,0)) = L((1,1)) = L(0,1)) = { P1 }
L((0,2)) = L((1,2)) = { P1, P3 }
L((2,3)) =

14

Abstract model - Definition

• Abstract states are defined over Boolean
variables { B1,...,Bk }:
Sh { 0,1 }k

• h(s) = sh
for all 1jk : [s |= Pj sh |= Bj]

• Lh(sh) = { Pj | sh |= Bj }

• Is h appropriate for AP?

15

Example (concrete model)
Program over natural variables x, y
S = N x N
AP = { P1, P2, P3 } where

P1 = x≤1 , P2 = x>y , P3 = y=2
AP = { x≤1 , x>y , y=2 }

L((0,0)) = L((1,1)) = L(0,1)) = { P1 }
L((0,2)) = L((1,2)) = { P1, P3 }
L((2,3)) =

16

Sh { 0,1 }3

h((0,0)) = h((1,1)) = h(0,1)) = (1,0,0)
h((0,2)) = h((1,2)) = (1,0,1)
No concrete state is mapped to (1,1,1)

Lh((1,0,0)) = { P1 }
Lh((1,0,1)) = { P1, P3 }

The concrete state and its abstract state are
labeled identically

Example – (abstract model)
AP={P1=(x≤1),P2=(x>y),P3=(y=2)}

17

Computing Rh (same example)

(sh,th) Rh
s,t [h(s) = sh h(t) = th (s,t)R]

18

Program with one statement: x := x+1

((b1,b2,b3) , (b’1,b’2,b’3)) Rh

xyx’y’ [P1(x,y) b1
P2(x,y) b2
P3(x,y) b3
x’=x+1 y’=y
P1(x’,y’) b’1
P2(x’,y’) b’2
P3(x’,y’) b’3]

Computing Rh (same example)

sh th

h(s)=sh

h(t)=th

R(s,t)

s t

19

Depending on h and the size of M,
Mh (I.e. Ih, Rh) can be built using:

 BDDs, if S is finite and not too big

 SAT solver, if S is finite and possibly big

 Theorem prover (SMT), S might be infinite

20

Logic preservation Theorem

 Theorem If is an ACTL/ACTL*
specification over AP, then

Mh |= M |=

 However, the reverse may not be valid.

21

Traffic Light Example

red

green

yellow

M

Property:
 =AG AF ¬ (state=red)

Abstraction function h
maps green, yellow to
go.

red

go

Mh

Mh |= M |=

22

Traffic Light Example (Cont)

If the abstract model invalidates a specification,
the actual model may still satisfy the specification.

 Property:
 =AG AF (state=red)

 M |= but Mh |

red

green

yellow

red

go

M Mh
 Spurious Counterexample:

red,go,go, ...

23

CounterExample-Guided
Abstraction-Refinement

(CEGAR)

24

The CEGAR Methodology

Th is not spurious
check spurious
counterexample

Th

stop

Mh |=

generate
counterexample Th

Mh |

model check

Mh

generate initial
abstraction

M and

refinement:
generate new abstraction

Th
is spurious

Mh

25

Generating the Initial
Abstraction

 If we use predicate abstraction then
predicates are extracted from the
program’s control flow and the checked
property

 If we use localization reduction then the
un-abstracted variables are those
appearing in the predicates above

Predicate Abstraction - Example

while (true) {
if (reset == 1) { x=y=0; }
else if (x<y) { x=x+1; }
else if (x==y && !(y==2)) { y=y+1; }
else if (x==y) { x=y=0; }

}
=AF(x==y)

AP={reset==1, x<y, x==y, y==2}
26

27

Model Check The Abstract Model

Given the abstract model Mh

 If Mh | , then the model checker generates a
counterexample trace (Th)

 Most current model checkers generate paths or
loops

 Question : is Th spurious?

28

Counterexamples
• For AGp it is a path to a state satisfying p
• For AFp it is a infinite path represented by a

path+loop, where all states satisfy p

On the other hand
• For EFp we need to return the whole computation

tree (the whole model)

• For AX(AGpAGq) we need to return a computation
tree demonstrating
EX(EFp EFq)

29

Path Counterexample

Assume that we have four abstract states
{1,2,3} {4,5,6}
{7,8,9} {10,11,12}

Abstract counterexample Th= , , ,

therefore, M | Th is not spurious,

30

Spurious Path Counterexample

Th is spurious

failure state
The concrete states mapped
to the failure state are
partitioned into 3 sets

dead-end bad irrelevant
yes no no
no yes no

states
reachable
out edges

31

Refining The Abstraction

 Goal : refine h so that the dead-end states
and bad states do not belong to the same
abstract state.

 For this example, two possible solutions.

32

Refining the abstraction

• Refinement separates dead-end states
from bad states, thus, eliminating the
spurious transition from Si-1 to Si

• This can be done, for instance, by adding a
new predicate to the abstract model and
building a new, refined abstract model

33

Completeness of CEGAR

If M is finite
 Our methodology refines the abstraction

until either the property is proved or a real
counterexample is found

 Theorem Given a finite model M and an
ACTL* specification whose
counterexample is either path or loop, our
algorithm will find a model Ma such that

Ma |= M |=

34

Conclusion

We presented a framework for
Counterexample Guided Abstraction
Refinement (CEGAR) that

 Automatically constructs an initial abstraction,
based on the checked property and the system

 If the abstract system contains a spurious
counterexample then the abstraction is
automatically refined in order to eliminate the
counterexample

