
Introduction to Software
Verification

Orna Grumberg

Lectures Material
winter 2017-18

Lecture 13

16.1.18

3

Other solutions to the state-
explosion problem

Small models replace the full, concrete
model:

• Abstraction
• Compositional verification
• Partial order reduction
• Symmetry

4

Abstraction preserving ACTL/ACTL*

We use Existential Abstraction in which the
abstract model is an over-approximation of
the concrete model:

– The abstract model has more behaviors
– But no concrete behavior is lost

• Every ACTL/ACTL* property true in the
abstract model is also true in the concrete
model

5

Existential Abstraction

M

Mh

Given an abstraction function h : S  Sh, the
concrete states are grouped and mapped into
abstract states :

h h h

M  Mh

6

How to define
an abstract model:

Given M and , choose
• Sh - a set of abstract states

• AP – a set of atomic propositions that label
concrete and abstract states

• h : S  Sh - a mapping from S on Sh that
satisfies:

h(s) = h(t) only if L(s)=L(t)

• h is called appropriate w.r.t. AP

7

The abstract model
Mh = (Sh, Ih, Rh, Lh)

• sh  Ih  sI : h(s) = sh

• (sh,th)  Rh 
s,t [h(s) = sh  h(t) = th  (s,t)R]

• Lh(sh) = L(s) for some s where h(s) = sh

This is an exact abstraction

8

An approximated abstraction
(an approximation)

• sh  Ih  sI : h(s) = sh

• (sh,th)  Rh 
s,t [h(s) = sh  h(t) = th  (s,t)R]

• Lh is as before

Notation:
Mr – reduced (exact) Mh - approximated

9

Depending on h and the size of M,
Mh (I.e. Ih, Rh) can be built using:

 BDDs or

 SAT solver or

 Theorem prover (SMT)

We later demonstrate such constructions for

specific types of abstractions

10

Predicate Abstraction

• Given a program over variables V
• Predicate Pi is a first-order atomic

formula over V
Examples: x+y < z2 , x=5

• Choose: AP = { P1,…,Pk } that includes
– the atomic formulas in the property  and
– conditions in if, while statements of the

program

Predicate Abstraction - Example

while (x1) {
……
if (y=2) { …. }
……

}

=AFG(x>y)

AP={x>y,x1,y=2}
11

12

• Labeling of concrete states:

L(s) = { Pi | s |= Pi }

Predicate Abstraction

13

Example (concrete model)
Program over natural variables x, y
S = N x N
AP = { P1, P2, P3 } where

P1 = x≤1 , P2 = x>y , P3 = y=2
AP = { x≤1 , x>y , y=2 }

L((0,0)) = L((1,1)) = L(0,1)) = { P1 }
L((0,2)) = L((1,2)) = { P1, P3 }
L((2,3)) = 

14

Abstract model - Definition

• Abstract states are defined over Boolean
variables { B1,...,Bk }:
Sh  { 0,1 }k

• h(s) = sh 
for all 1jk : [s |= Pj  sh |= Bj]

• Lh(sh) = { Pj | sh |= Bj }

• Is h appropriate for AP?

15

Example (concrete model)
Program over natural variables x, y
S = N x N
AP = { P1, P2, P3 } where

P1 = x≤1 , P2 = x>y , P3 = y=2
AP = { x≤1 , x>y , y=2 }

L((0,0)) = L((1,1)) = L(0,1)) = { P1 }
L((0,2)) = L((1,2)) = { P1, P3 }
L((2,3)) = 

16

Sh  { 0,1 }3

h((0,0)) = h((1,1)) = h(0,1)) = (1,0,0)
h((0,2)) = h((1,2)) = (1,0,1)
No concrete state is mapped to (1,1,1)

Lh((1,0,0)) = { P1 }
Lh((1,0,1)) = { P1, P3 }

The concrete state and its abstract state are
labeled identically

Example – (abstract model)
AP={P1=(x≤1),P2=(x>y),P3=(y=2)}

17

Computing Rh (same example)

(sh,th)  Rh 
s,t [h(s) = sh  h(t) = th  (s,t)R]

18

Program with one statement: x := x+1

((b1,b2,b3) , (b’1,b’2,b’3))  Rh 

xyx’y’ [P1(x,y)  b1 
P2(x,y)  b2 
P3(x,y)  b3 
x’=x+1  y’=y 
P1(x’,y’)  b’1 
P2(x’,y’)  b’2 
P3(x’,y’)  b’3]

Computing Rh (same example)

sh th

h(s)=sh

h(t)=th

R(s,t)

s t

19

Depending on h and the size of M,
Mh (I.e. Ih, Rh) can be built using:

 BDDs, if S is finite and not too big

 SAT solver, if S is finite and possibly big

 Theorem prover (SMT), S might be infinite

20

Logic preservation Theorem

 Theorem If  is an ACTL/ACTL*
specification over AP, then

Mh |=   M |= 

 However, the reverse may not be valid.

21

Traffic Light Example

red

green

yellow

M

Property:
 =AG AF ¬ (state=red)

Abstraction function h
maps green, yellow to
go.

red

go

Mh

Mh |= M |=  

22

Traffic Light Example (Cont)

If the abstract model invalidates a specification,
the actual model may still satisfy the specification.

 Property:
 =AG AF (state=red)

 M |=  but Mh | 

red

green

yellow

red

go

M Mh
 Spurious Counterexample:

red,go,go, ...

23

CounterExample-Guided
Abstraction-Refinement

(CEGAR)

24

The CEGAR Methodology

Th is not spurious
check spurious
counterexample

Th

stop

Mh |= 

generate
counterexample Th

Mh | 

model check

Mh

generate initial
abstraction

M and 

refinement:
generate new abstraction

Th
is spurious

Mh

25

Generating the Initial
Abstraction

 If we use predicate abstraction then
predicates are extracted from the
program’s control flow and the checked
property

 If we use localization reduction then the
un-abstracted variables are those
appearing in the predicates above

Predicate Abstraction - Example

while (true) {
if (reset == 1) { x=y=0; }
else if (x<y) { x=x+1; }
else if (x==y && !(y==2)) { y=y+1; }
else if (x==y) { x=y=0; }

}
=AF(x==y)

AP={reset==1, x<y, x==y, y==2}
26

27

Model Check The Abstract Model

Given the abstract model Mh

 If Mh | , then the model checker generates a
counterexample trace (Th)

 Most current model checkers generate paths or
loops

 Question : is Th spurious?

28

Counterexamples
• For AGp it is a path to a state satisfying p
• For AFp it is a infinite path represented by a

path+loop, where all states satisfy p

On the other hand
• For EFp we need to return the whole computation

tree (the whole model)

• For AX(AGpAGq) we need to return a computation
tree demonstrating
EX(EFp EFq)

29

Path Counterexample

Assume that we have four abstract states
{1,2,3}   {4,5,6}  
{7,8,9}   {10,11,12}  

Abstract counterexample Th= , , , 
   

therefore, M | Th is not spurious,

30

Spurious Path Counterexample

Th is spurious

failure state
The concrete states mapped
to the failure state are
partitioned into 3 sets

dead-end bad irrelevant
yes no no
no yes no

states
reachable
out edges

   

31

Refining The Abstraction

 Goal : refine h so that the dead-end states
and bad states do not belong to the same
abstract state.

 For this example, two possible solutions.

32

Refining the abstraction

• Refinement separates dead-end states
from bad states, thus, eliminating the
spurious transition from Si-1 to Si

• This can be done, for instance, by adding a
new predicate to the abstract model and
building a new, refined abstract model

33

Completeness of CEGAR

If M is finite
 Our methodology refines the abstraction

until either the property is proved or a real
counterexample is found

 Theorem Given a finite model M and an
ACTL* specification  whose
counterexample is either path or loop, our
algorithm will find a model Ma such that

Ma |=   M |= 

34

Conclusion

We presented a framework for
Counterexample Guided Abstraction
Refinement (CEGAR) that

 Automatically constructs an initial abstraction,
based on the checked property and the system

 If the abstract system contains a spurious
counterexample then the abstraction is
automatically refined in order to eliminate the
counterexample

