-

.

Introduction to Software
Verification

Orna Grumberg

Lectures Material
winter 2017-18

~

/

Lecture 13

16.1.18

Other solutions to the state-
explosion problem

Small models replace the full, concrete
model:

 Abstraction

Abstraction preserving ACTL/ACTL*

We use Existential Abstraction in which the
abstract model is an over-approximation of
the concrete model:

— The abstract model has more behaviors
— But no concrete behavior is lost

« Every ACTL/ACTL* property true in the
abstract model is also true in the concrete
model

Existential Abstraction

Given an abstraction functionh: S — S,, the
concrete states are grouped and mapped into
abstract states:

How to define
an abstract model:

Given M and ¢, choose
- S, - aset of abstract states

* AP - a set of atomic propositions that label
concrete and abstract states

- h:S—>S5, - amapping from S on S, that
satisfies:

h(s) = h(t) only if L(s)=L(%)

* his called appropriate w.r.t. AP

The abstract model
M, = (S5h. I, Ry, Ly)

* s, € I, < dsel: h(s)=s,

¢ (Sh,'l'h) S Rh<:>
ds,t [h(s)=s, A h(t) =1, A(s,1)eR]

* Ly(s;) =L(s) for some s where h(s) = s,

This is an exact abstraction

An approximated abstraction
(an approximation)

* s, €I, & 3sel: h(s)=s,

* (sn.th) € Ry <
ds,t [h(s)=s, A h(t) =1, A(s,1)eR]

» L, is as before

Notation:
M. - reduced (exact) M, - approximated

Depending on h and the size of M,
M, (I.e. I,, R,) can be built using:
= BDDs or
= SAT solver or

= Theorem prover (SMT)

We later demonstrate such constructions for

specific types of abstractions

Predicate Abstraction

» Given a program over variables V

* Predicate P, is a first-order atomic
formula over V

Examples: x+y<z?, x=5

* Choose: AP = { P,,..,P, } that includes

- the atomic formulas in the property ¢ and

- conditions in if, while statements of the
program

10

Predicate Abstraction - Example

while (x<1) {

p=AFG(x>y)

AP={x>y,x<1,y=2}

11

Predicate Abstraction

» Labeling of concrete states:

L(s)={Pi | s|=P; }

12

Example (concrete model)

Program over natural variables x, y
S=NxN
AP = { P;, P,, P; } where

Pi=x<1, P, =x>y, P3=y=2
AP = { x<1 , x>y ,y=2}

L((0,0)) = L((1.1)) = L(0.1)) = { Py }
1((0,2)) = L((1,2)) = { Py, P35 }
((2,3))= O

13

Abstract model - Definition

- Abstract states are defined over Boolean
variables { 81 B, }:

* h(s) = s, ©
forall 1<j<k:[s |=P;< sy |= B;]

* Lu(sn) = { P; ENE B, }

» Is h appropriate for AP?

14

Example (concrete model)

Program over natural variables x, y
S=NxN
AP = { P;, P,, P; } where

Pi=x<1, P, =x>y, P3=y=2
AP = { x<1 , x>y ,y=2}

L((0,0)) = L((1.1)) = L(0.1)) = { Py }
1((0,2)) = L((1,2)) = { Py, P35 }
((2,3))= O

15

Example - (abstract model)

AP=(Py=(x<1) P,=(0y) P5=(y=2)}
Sh - { 0:1 }3

h((0,0)) = h((1,1)) = h(0.,1)) = (1,0,0)
h((0.2)) = h((1,2)) = (1,0.1)
No concrete state is mapped to (1,1,1)

Ln((1,0,0)) = { P, }
Ln((1,0,1)) = { P, P35}

The concrete state and its abstract state are
labeled identically 16

Computing R, (same example)

(Sh'th) S Rh<:>
ds,t [h(s)=s, A h(t) =1, A(s,1)eR]

17

Computing R, (same example)

Program with one statement: x := x+1

Sh T
((b;.b,,bs), (b'1.b'5,b'3)) € R, &
s 1

Ixyx'y" [Pi(x,y) < b; A7
Pa(x,y) < by A & h(s)=s,
P;(x,y) < bs A)
X'=x+1 A y'zy /\} R(s, 1)
P(x',y')e b’y Al
P.(x.y') © b, A+ h(t)=t,
Ps(xy')e b5 |1

18

Depending on h and the size of M,
M, (I.e. I,, R,) can be built using:

- BDDs, if Sis finite and not too big
= SAT solver, if S is finite and possibly big

= Theorem prover (SMT), S might be infinite

19

Logic preservation Theorem

» Theorem If ¢isan ACTL/ACTL*
specification over AP, then

M = 90=>M]|=0

= However, the reverse may not be valid.

20

Traffic Light Example

Property: Abstraction function h
¢ =AG AF - (state=red) maps green, yellow to

go.

Mh 21

Traffic Light Example (Cont)

If the abstract model invalidates a specification,
the actual model may still satisfy the specification.

" Property:
(p =AG AF (state=red)

"MI|=0Q butM, [+ 0O

" Spurious Counterexample:

(red,go,go, ...)

22

CounterExample-Guided
Abstraction-Refinement

(CEGAR)

23

The CEGAR Methodology

lMand(p

generate initial
abstraction

1 M, M, |= o
model check
M, WM 1= ¢
refinement: generate

generate new abstraction counterexample Th

‘ T
Th check spurious . _
is spurious | counterexample | Th is not spurious

24

Generating the Initial
Abstraction

« If we use predicate abstraction then
predicates are extracted from the
program'’s control flow and the checked
property

« If we use localization reduction then the
un-abstracted variables are those
appearing in the predicates above

25

Predicate Abstraction - Example

while (true) {
if (reset == 1) { x=y=0; }
else if (x<y) { x=x+1; }
else if (x==y && I(y==2)) { y=y+1; }
else if (x==y) { x=y=0; }

}
p=AF(x==y)

AP={reset==1, x<y, x==y, y==2}

26

Model Check The Abstract Model

Given the abstract model M,

= If M, |# ¢, then the model checker generates a
counterexample trace (T},)

= Most current model checkers generate paths or
loops

= QQuestion : is T, spurious?

27

Counterexamples

*+ For AGp it is a path to a state satisfying —p

+ For AFp it is a infinite path represented by a
path+loop, where all states satisfy —p

On the other hand

* For EFp we need to return the whole computation
tree (the whole model)

* For AX(AGpVAGQ) we need to return a computation
tree demonstrating

EX(EF—pn EF—q)

28

Path Counterexample

Assume that we have four abstract states
{123} a {456}
{789}y {10,1112} <6

Abstract counterexample T,= (a, 3, v, 6)

I > I >
Lad Ll Ll
e} P Y T ®
»
5 . . . » . » .
» . N . N . . .
» . . . » . . .
» . . . » . » .
» . N . N . . .
5 . . . » . ° .
’ : ‘ \
>

T, is not spurious, therefore, M |+ ¢

29

Spurious Path Counterexample

failure state

T, 1S spurious

o E Y)

BA—R—R R

O~—oO0 |&] |©
\

0 PN @

O 0| To| |e

The concrete states mapped
to the failure state are
partitioned into 3 sets

states dead-end| Dbad |[irrelevant
reachable | yes no no
out edges| no yes no

30

Refining The Abstraction

Goal : refine h so that the dead-end states

and bad states do not belong to the same
abstract state.

For this example, two possible solutions.

N

\“\

™Y

AN

..’

[
»

N\

0
o

..’

o\

Q\
O

N\

ON
>0

N\

o

’4
®@ ® @

31

Refining the abstraction

* Refinement separates dead-end states
from bad states, thus, eliminating the
spurious transition from S.; to S,

» This can be done, for instance, by adding a

new predicate to the abstract model and
building a new, refined abstract model

32

Completeness of CEGAR

If M is finite

= Our methodology refines the abstraction
until either the property is proved or a real
counterexample is found

= Theorem Given a finite model M and an
ACTL* specification ¢ whose
counterexample is either path or loop, our
algorithm will find a model M_ such that

Mol=¢ = MI|=4¢

33

Conclusion

We presented a framework for
Counterexample Guided Abstraction
Refinement (CEGAR) that

= Automatically constructs an initial abstraction,
based on the checked property and the system

» If the abstract system contains a spurious
counterexample then the abstraction is
automatically refined in order to eliminate the

counterexample

34

