-

=

Introduction to Software
Verification

Orna Grumberg

Lectures Material
winter 2017-18

~

/

Lecture b

Model of a system

Kripke structure / transition system

Reactive
,b (a) Systems
<> (>
(e

Labeled by atomic propositions AP
(critical section, variable value...)

Kripke Structure M=(S,R,L,S)
Given AP - finite set of atomic proposition

- S - (finite) set of states

- RcSxS - total transition relation

For every seS there exists s'eS such that (s,s')eR.
Totality means that every path is infinite

+ L:S—24" - labeling function that associates every state
with the atomic propositions true in that state

SoSS - set of initial states (optional)

CTL*

State formulas:

* p €AP

* —Qg1, 9195, 9119, Where g;,g, are state formulas
- Ef, Af where f is a path formula

Path formulas:

+ Every state formula g is a path formula

* ﬁfl, fl\/fz, fl/\fz, Xfl, Gfl, Ffl, flufz where
f,,f, are path formulas

CTL* - set of all state formulas

Semantics of CTL*

T = Sg,5q,.- 1S a path in M if R(s;,s;,;) for every i.
n' - the suffix of = starting at s..

State formulas:

* MseEp < pel(s)

+ Ms EEf < thereisapathrn fromsst M, n =f
+ MsEAf < forevery path n froms, M, n = f

Semantics of CTL*

T = Sg,5q,.- 1S a path in M if R(s;,s;,;) for every i.
n' - the suffix of = starting at s..

Path formulas:
* M, 1 = g, where g is a state formula < M, sy E g

O O O O 0 0 0 kg

o - g

Semantics of CTL*

T = Sg,5q,.- 1S a path in M if R(s;,s;,;) for every i.
n' - the suffix of = starting at s..

Path formulas:
* M, 1 = g, where g is a state formula < M, sy E g

* M,neXfeo M rlef

» o0 o o EXf
»0 o o Ef

-

00
00

AN
O
O

Semantics of CTL*

T = Sg,5q,.- 1S a path in M if R(s;,s;,;) for every i.
n' - the suffix of = starting at s..

- O O O o oo EfiUT,
-, O O O O O O = -[-‘1
O O O o o o ET;
O O O O O = fz

* M, = Gf < forevery k>0, M, nk = f
- M, n = Ff © there exists k >0,s.t. M, ik =

- M, nEf,Uf, < thereexists k>0, s.t. M, nk = f,
and for every O <j<k, M, T E f,

Semantics of CTL*

T = Sg,5q,.- 1S a path in M if R(s;,s;,;) for every i.
n' - the suffix of = starting at s..

Path formulas:

=xxzxz

, T = g, where g is a state formula < M, s, E g

nteEXfeM aef
n & 6f < for every k>0, M, nk & f
t E Ff < there exists k >0, s.t. M, nk = f

,tEf,Uf, < there exists k>0, s.t. M, nk = f,

and for every O <j<k, M, T E f,

10

Semantics of CTL*

M = g < for every initial state s: M,s = g

11

LTL/CTL/CTL*

LTL - state formulas of the form Ay
v - path formula, contains no path quantifiers
+ interpreted over infinite computation paths

CTL - state formulas where path quantifiers and

temporal operators appear in pairs:
AG, AU, AF, AX, EG, EVU, EF, EX

* interpreted over infinite computation trees

CTL* - Allows any combination of temporal operators
and path quantifiers. Includes both LTL and CTL

12

LTL

State formulas:
+ Af where f is a path formula

Path formulas:
* p €AP

¢ ﬁfl, fl\/fz, fl/\fz, Xfl, Gfl, Ffl, f1Uf2 wher'e
f,,f, are path formulas

LTL - set of all state formulas

13

CTL

CTL - set of all state formulas

* p €AP
91, 91V92. 91nNg2

¢ AX 91, AG 91, AF 91, A91U 92:
- EXqg;, EG gy, EF gy, EgiU g,

where g,,9, are state formulas

14

Semantics of CTL

Recall: path n=s,,s;,..

+ MsEp < pelL(s) for p AP

* MskEoVe, = MsEgp or M\skEop,
* M,;s = EXp < thereis s' s.t. R(s,s') and
Ms' Eo

* M,s = EGyp < there is a path = froms, s.t.
for every i>0, M s, E ¢

15

Semantics of CTL

* M;s E E[p;Up,] < there is a path 7 from s
and there is k>0 s.t. M,s; = ¢,
and for every k>i>0, Ms; E ¢,

* M;s = AGyp < for every path = from s
and for every i>0, M;s; = ¢

* M,;s = AFp < for every path = from s
there exists i>0 s.t. M;s, = ¢

16

Examples (LTL)

AG —(start n—ready)

AG (req — F ack)

A GF enbled

A FG deadlock

A (GF enbled — GF running)

ok wn =

Cannot express existential properties: "from
any state the system can..."

17

NoOhswN e

Examples (CTL)

EF (starta—ready)

AG (req — AF ack)

AG (AF enbled)

AF (AG deadlock)

AG (EF restart)

AG (non_critical > EX tryring)
AG (try > A[try U succeed])

18

Equivalence

» Path formulas v, v, are equivalent if:
For every M and path &
M, tEvy, iIff M Ey,

+ State formulas ¢4, 9, are equivalent if:
For every M and state s

19

Expressiveness

—, v, X, U, E suffice to express all CTL*:
* Ff=true U f
° Gf = —F (—lf)
- Af =—-E (—uf)

In CTL: EX, EG, EU are sufficient

+ A [pUql=(—EG —q) A =E[-q U (—p A —q)]

20

LTL vs. CTL

* A (FG p) has no equivalent in CTL
“in all paths, p globally holds from some point on"

* Failed attempts:

AFAGP : "in every path there is a point from
which all reachable states satisfy p."

All paths satisfy FGp

So 1 2 - 50,50.50.--
M - 80,50,--50,51,52,52.,55...

But first one does not sat FAGp

21

LTL and CTL vs. CTL*

+ E (GFp) has no equivalent in LTL or CTL

22

Theorem:
+ The expressive powers of LTL and CTL are
incomparable. That is,

- There is an LTL formula that has no equivalent
CTL formula

- There is a CTL formula that has no equivalent
LTL formula

+ CTL* is more expressive than either of
them

23

Explicit Model Checking for CTL

Model Checking [CE81,Q582]

An efficient procedure that receives:
= A finite-state model describing a system

= A temporal logic formula describing a
property

It returns
yes, if the system has the property
no + Counterexample, otherwise

25

CTL Model Checking M |= f

* For each s, computes label(s):
set of subformulas of f which are true in s

* The Model Checking algorithm works iteratively
on subformulas of f, from simpler subformulas to
more complex ones

* For checking AG(request = AF grant)
- Check grant, request

- Then check AF grant

- Next check request = AF grant

- Finally check AG(request = AF grant)

26

Model Checking M |= f (cont.)

+ We check subformula g of f only after all
subformulas of g have already been checked

» For subformula g, the algorithm adds g to
label(s) for every state that satisfies g

- g elabel(s) @ MsEg

* The algorithm has time complexity:
O(IM] x Ifl)

27

Model Checking M |= f (cont.)

+ M = f if and only if felabels(s) for all
initial states s of M

- Denote S;={s|M,s=f}

* M = fif and only if Sy < S¢

28

Model Checking Atomic Propositions

* For atomic propsition peAP:
p € label(s) < p € L(s)
| ' —
Held by alg Defined by M

How do we handle more complex formulas?

Observation:
- Sufficient to handle —, v, EX, EU, EG

29

Model Checking —, v formulas
—f,;: add to label(s) if and only if f,;¢ labels(s)

fivf,: add to label(s) if and only if
f,e labels(s) or f,e labels(s)

30

Model Checking g = EX f,

add g to label(s) if and only if s has a successor
t such that f;e labels(t)

procedure CheckEX (f,)
T:={t|f, € label(t) }
while T = & do
chooset €T T:=T\({t}.
forall s s.t. R(s,t) do
if EX f; ¢ label(s) then
label(s) : = label(s) U { EX fi};
end for all

end while Ny

Model Checking g = E(f; U f,)

procedure CheckEU (f,, f,)
T:={s| f, e label(s) }
For all seT do label(s) := label(s)u { E(f; U f,) }

while T J do
chooses eT; T: =T\ ({s}.
for all +s.t. R(t,s) do

if E(f;U f,) ¢ label(t) and f; € label(t) then
label(t) : = label(t) U { E(f, U f,) };
T:=Tu{t)
end for all
end while

32

Example g = E(fl U fz)

33

