Introduction to Software Verification

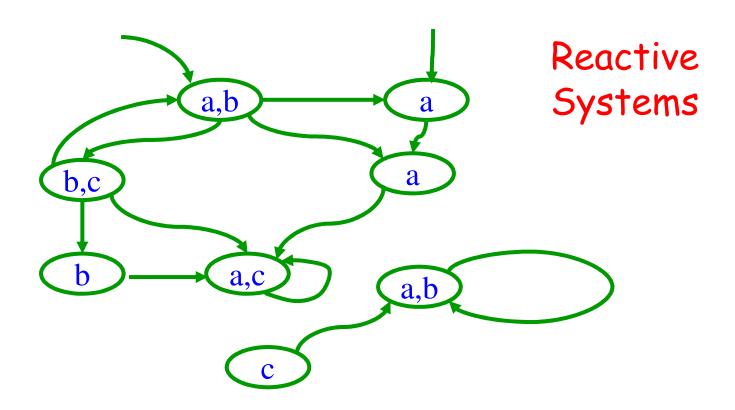
Orna Grumberg

Lectures Material winter 2017-18

Lecture 5

Model of a system

Kripke structure / transition system



Labeled by atomic propositions AP (critical section, variable value...)

Kripke Structure M=(S,R,L,S₀)

Given AP - finite set of atomic proposition

- S (finite) set of states
- $R\subseteq S\times S$ total transition relation For every $s\in S$ there exists $s'\in S$ such that $(s,s')\in R$. Totality means that every path is infinite
- L: $S \rightarrow 2^{AP}$ labeling function that associates every state with the atomic propositions true in that state
- $S_0 \subseteq S$ set of initial states (optional)

CTL*

State formulas:

- p ∈ AP
- $\neg g_1, g_1 \lor g_2, g_1 \land g_2$ where g_1, g_2 are state formulas
- · Ef, Af where f is a path formula

Path formulas:

- Every state formula g is a path formula
- $\neg f_1$, $f_1 \lor f_2$, $f_1 \land f_2$, Xf_1 , Gf_1 , Ff_1 , $f_1 Uf_2$ where f_1, f_2 are path formulas

CTL* - set of all state formulas

 $\pi = s_0, s_1, ...$ is a path in M if R(s_i, s_{i+1}) for every i. π^i - the suffix of π starting at s_i .

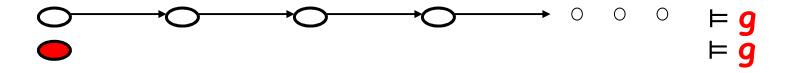
State formulas:

- $M,s \models p \Leftrightarrow p \in L(s)$
- M,s \models Ef \Leftrightarrow there is a path π from s s.t. M, $\pi \models$ f
- M,s \models Af \Leftrightarrow for every path π from s, M, $\pi \models$ f

 $\pi = s_0, s_1, ...$ is a path in M if R(s_i, s_{i+1}) for every i. π^i - the suffix of π starting at s_i .

Path formulas:

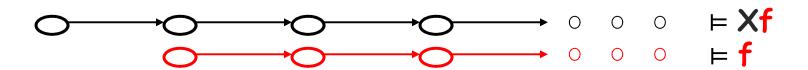
• M, $\pi \models g$, where g is a state formula \Leftrightarrow M, $s_0 \models g$



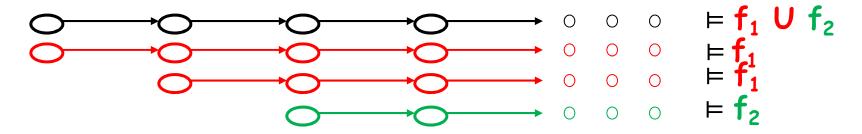
 $\pi = s_0, s_1,...$ is a path in M if R(s_i, s_{i+1}) for every i. π^i - the suffix of π starting at s_i .

Path formulas:

- M, $\pi \models g$, where g is a state formula $\Leftrightarrow M$, $s_0 \models g$
- M, $\pi \models Xf \Leftrightarrow M$, $\pi^1 \models f$



 $\pi = s_0, s_1, ...$ is a path in M if R(s_i, s_{i+1}) for every i. π^i - the suffix of π starting at s_i .



- M, $\pi \models Gf \Leftrightarrow \text{for every } k \ge 0$, M, $\pi^k \models f$
- M, $\pi \models \mathsf{Ff} \Leftrightarrow \mathsf{there} \; \mathsf{exists} \; \mathsf{k} \geq \mathsf{0}, \; \mathsf{s.t.} \; \mathsf{M}, \; \pi^\mathsf{k} \models \mathsf{f}$
- M, $\pi \models f_1 \cup f_2 \Leftrightarrow$ there exists $k \ge 0$, s.t. M, $\pi^k \models f_2$ and for every $0 \le j < k$, M, $\pi^j \models f_1$

 $\pi = s_0, s_1, ...$ is a path in M if R(s_i, s_{i+1}) for every i. π^i - the suffix of π starting at s_i .

Path formulas:

- M, $\pi \models g$, where g is a state formula $\Leftrightarrow M$, $s_0 \models g$
- M, $\pi \models Xf \Leftrightarrow M$, $\pi^1 \models f$
- M, $\pi \models Gf \Leftrightarrow \text{for every } k \ge 0$, M, $\pi^k \models f$
- M, $\pi \models \mathsf{Ff} \Leftrightarrow \mathsf{there} \; \mathsf{exists} \; \mathsf{k} \geq \mathsf{0}, \; \mathsf{s.t.} \; \mathsf{M}, \; \pi^\mathsf{k} \models \mathsf{f}$
- M, $\pi \models f_1 \cup f_2 \Leftrightarrow$ there exists $k \ge 0$, s.t. M, $\pi^k \models f_2$ and for every $0 \le j < k$, M, $\pi^j \models f_1$

 $M \models g \Leftrightarrow \text{for every initial state s: } M,s \models g$

LTL/CTL/CTL*

- LTL state formulas of the form A_{ψ} path formula, contains no path quantifiers
- · interpreted over infinite computation paths

CTL - state formulas where path quantifiers and temporal operators appear in pairs:

AG, AU, AF, AX, EG, EU, EF, EX

· interpreted over infinite computation trees

CTL* - Allows any combination of temporal operators and path quantifiers. Includes both LTL and CTL

LTL

State formulas:

Af where f is a path formula

Path formulas:

- p ∈ AP
- $\neg f_1$, $f_1 \lor f_2$, $f_1 \land f_2$, Xf_1 , Gf_1 , Ff_1 , $f_1 Uf_2$ where f_1, f_2 are path formulas

LTL - set of all state formulas

CTL

CTL - set of all state formulas

- p ∈ *A*P
- $\neg g_1, g_1 \lor g_2, g_1 \land g_2$
- $AX g_1$, $AG g_1$, $AF g_1$, $A g_1 U g_2$,
- EX g_1 , EG g_1 , EF g_1 , E g_1 U g_2 , where g_1,g_2 are state formulas

Recall: path π = s_0 , s_1 ,...

- $M,s \models p \Leftrightarrow p \in L(s) \text{ for } p \in AP$
- M, $s \models \varphi_1 \lor \varphi_2 \iff M$, $s \models \varphi_1$ or M, $s \models \varphi_2$
- M,s \models EX φ \Leftrightarrow there is s' s.t. R(s,s') and M,s' \models φ
- $M,s \models EG\varphi \Leftrightarrow \text{there is a path } \pi \text{ from } s, s.t.$ for every $i \ge 0$, $M,s_i \models \varphi$

- M,s \models E[φ_1 U φ_2] \Leftrightarrow there is a path π from s and there is k \geq 0 s.t. M,s_k \models φ_2 and for every k \neq i \geq 0, M,s_i \models φ_1
- M,s \models AG $\phi \Leftrightarrow$ for every path π from s and for every $i \ge 0$, M,s $_i \models \varphi$
- M,s \models AF $\varphi \Leftrightarrow$ for every path π from s there exists i \geq 0 s.t. M,s_i $\models \varphi$

Examples (LTL)

- 1. $AG \neg (start \land \neg ready)$
- 2. $AG (req \rightarrow F ack)$
- 3. A GF enbled
- 4. A FG deadlock
- 5. A (GF enbled \rightarrow GF running)

Cannot express existential properties: "from any state the system can..."

Examples (CTL)

- EF (start∧¬ready)
- 2. $AG (req \rightarrow AF ack)$
- 3. AG (AF enbled)
- 4. AF (AG deadlock)
- 5. AG (EF restart)
- 6. AG (non_critical → EX tryring)
- 7. $AG (try \rightarrow A[try \cup succeed])$

Equivalence

• Path formulas $\psi_1, \, \psi_2$ are equivalent if: For every M and path π

$$M, \pi \vDash \psi_1 \text{ iff } M, \pi \vDash \psi_2$$

• State formulas ϕ_1 , ϕ_2 are equivalent if: For every M and state s

$$M, s \models \varphi_1 \text{ iff } M, s \models \varphi_2$$

Expressiveness

 \neg , \lor , X, U, E suffice to express all CTL*:

- Ff = true U f
- $Gf \equiv \neg F (\neg f)$
- Af $\equiv \neg E (\neg f)$

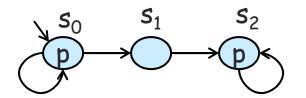
In CTL: EX, EG, EU are sufficient

• $A[pUq] \equiv (\neg EG \neg q) \land \neg E[\neg q \cup (\neg p \land \neg q)]$

LTL vs. CTL

- A (FG p) has no equivalent in CTL
 "in all paths, p globally holds from some point on"
- Failed attempts:

AFAGP: "in every path there is a point from which all reachable states satisfy p."



All paths satisfy FGp

$$-S_0,S_0,...S_0,S_1,S_2,S_2,S_2...$$

But first one does not sat FAGp

LTL and CTL vs. CTL*

• E (GFp) has no equivalent in LTL or CTL

Theorem:

- The expressive powers of LTL and CTL are incomparable. That is,
 - There is an LTL formula that has no equivalent CTL formula
 - There is a CTL formula that has no equivalent LTL formula
- CTL* is more expressive than either of them

Explicit Model Checking for CTL

Model Checking [CE81,QS82]

An efficient procedure that receives:

- A finite-state model describing a system
- A temporal logic formula describing a property

It returns
yes, if the system has the property
no + Counterexample, otherwise

CTL Model Checking M |= f

- For each s, computes label(s):
 set of subformulas of f which are true in s
- The Model Checking algorithm works iteratively on subformulas of f, from simpler subformulas to more complex ones
- For checking AG(request ⇒ AF grant)
 - Check grant, request
 - Then check AF grant
 - Next check request ⇒ AF grant
 - Finally check AG(request ⇒ AF grant)

Model Checking M |= f (cont.)

- We check subformula g of f only after all subformulas of g have already been checked
- For subformula g, the algorithm adds g to label(s) for every state that satisfies g
 - $g \in label(s) \Leftrightarrow M,s \models g$
- The algorithm has time complexity:
 O(|M| × |f|)

Model Checking M |= f (cont.)

M ⊨ f if and only if f∈labels(s) for all initial states s of M

- Denote $S_f = \{ s \mid M, s \models f \}$
- $M \models f$ if and only if $S_0 \subseteq S_f$

Model Checking Atomic Propositions

• For atomic propsition $p \in AP$:

$$p \in label(s) \Leftrightarrow p \in L(s)$$

Held by alg

Defined by M

How do we handle more complex formulas?

Observation:

Sufficient to handle ¬, ∨, EX, EU, EG

Model Checking \neg , \lor formulas

```
\neg f_1: add to label(s) if and only if f_1 \notin labels(s)
```

```
f_1 \lor f_2: add to label(s) if and only if f_1 \in labels(s) or f_2 \in labels(s)
```

Model Checking $g = EX f_1$

add g to label(s) if and only if s has a successor t such that $f_1 \in labels(t)$

```
procedure CheckEX (f_1)

T := \{ t \mid f_1 \in label(t) \}

while T \neq \emptyset do

choose t \in T; T := T \setminus \{t\};

for all s s.t. R(s,t) do

if EX f_1 \notin label(s) then

label(s) := label(s) \cup \{ EX f_1 \};

end for all

end while
```

Model Checking $g = E(f_1 \cup f_2)$

```
procedure CheckEU (f<sub>1</sub>, f<sub>2</sub>)
    T := \{ s \mid f_2 \in label(s) \}
    For all s \in T do label(s) := label(s) \cup \{ E(f_1 \cup f_2) \}
    while T \neq \emptyset do
                                                     Do not add a state to
       choose s \in T; T := T \setminus \{s\};
                                                       T more than once
       for all t s.t. R(t,s) do
             if E(f_1 \cup f_2) \notin label(t) and f_1 \in label(t) then
                  label(t) : = label(t) \cup { E(f<sub>1</sub> U f<sub>2</sub>) };
                  \mathsf{T}:=\mathsf{T}\cup\{\mathsf{t}\}
       end for all
    end while
```

Example
$$g = E(f_1 \cup f_2)$$