
FORMAL METHODS:
PAST, PRESENT, OR FUTURE?

Gerard Holzmann
gh@jpl.nasa.gov

2

software verification:
a moving target

top: manned
bottom: robotic

manned
robotic

code size

year

aerospace – military, commercial, space

5K

3M

a bigger
challenge

a challenge

the past (~1979)
verifying concurrency

(Spin Version 6.4.4 -- 9 July 2015)

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 cycle checks - (disabled by -DSAFETY)

 invalid end states +

State-vector 68 byte, depth reached 813773, errors: 0

 6048432 states, stored

 3526446 states, matched

 9574878 transitions (= stored+matched)

 0 atomic steps

Stats on memory usage (in Megabytes):

 647.061 memory usage (Mbyte)

unreached in proctype p5

 tanen5:50, state 36, "-end-"

 (1 of 36 states)

pan: elapsed time 4.5 seconds

pan: rate 1,344,096 states/second

3

the present

present and future

 so, today we can verify problems
from 1981 just fine…
• but what about the continuing increase

in complexity?

 issues that remain:
• efficiency & scaling

 algorithms, data structures,
adaption to cloud computing

• expressiveness & ease of use
 logic, languages, user interfaces

4

GUI

how fundamental is all this?
the parts of a logic model checker

exact
compressed
red/back tree
hash-compact
bloom filter

lex/yacc search search store store

hash

Specification Search Storage Front-end

storage lex/yacc search

symtab stack hashing

GUI

error
reporting

C / Java
converter

local
multi-core
cloud
GPU

specification
languages &
logics

5

automata theoretic verification

6

Tools

algorithms &
data structures

dfs, bfs, ndfs

sequential

parallel

bounded

heuristic

randomized

local

distributed

cloud

core/disk

lossy/exact

hash functions

propositional &

linear temporal logic

branching time logic
Languages

Specifications

search & storage

automata & logic finite-automata

-automata

formal methods = computer science
 (logic +
 data structures +
 algorithms)

+ the chance to work on some really
important problems

7

cool

8

