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software verification:
a moving target

aerospace — military, commercial, space
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the past (~1979)

verifying concurrency
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Fig. 4-10. A sliding win
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(Spin Version 6.4.4 -- 9 July 2015)
+ Partial Order Reduction

Full statespace search for:
never claim
assertion violations
cycle checks
invalid end states

(none specified)

(disabled by -DSAFETY)

State-vector 68 byte, depth reached 813773, errors: 0

6048432 states, stored

3526446 states, matched

9574878 transitions (= stgq
0 atomic steps

a=d+matched)

Stats on memory usage (in ]
647.061 mMemory usage

tanen5:50, state 36,
(1 of 36 states)

the present

elapsed time 4.5 seconds

pan:
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present and future

* 5o, today we can verify problems
from 1981 just fine...
 but what about the continuing increase
in complexity?
= jssues that remain:

- efficiency & scaling

= algorithms, data structures,
adaption to cloud computing

* expressiveness & ease of use WL




how fundamental is all this?
the parts of a logic model checker

Front-end : Specification : Search : Storage
[ [ [
C /Java [ [ [
converter I I I
[ i

GUI lex/yacc storage

I
I
| exact
I
I

specification error local compressed

languages & reporting e ——» red/back tree

logics cloud hash-compact
GPU

bloom filter



automata theoretic verification

dfs, bfs, ndfs local
sequential distributed
parallel search & storage cloud
bounded core/disk
heuristic ) lossy/exact
randomized algorithms & hash functions

data structures

finite-automata
w-automata

propositional &
linear temporal logic
branching time logic

automata & logic

Languages
Specifications




formal methods = computer science
(logic +
data structures +
algorithms)

+ the chance to work on some really
im nt problems
coo]







