ORMAL METHODS:
PAST, PRESENT, OR FUTURE?

Gerard Holzmann
gh@jpl.nasa.gov

software verification:
a moving target

aerospace — military, commercial, space
10,000,000 P Y 1 5P

1,000,000

code size

100,000

10,000

1,000

100

the past (~1979)

verifying concurrency

SLIANG WiINDL

HostReady
begin
FromHo

[NexrFrameT

L N T SR

#define Maxseq
#define Wrong (x)
#define g h
#defins 1

chan q(z2) -
active [3) Pr

{ byte mextpy
chan in, oy

159

Maxseq) of { byta

in = g[_pigg;

out

getflr), xr
FrameExpected the{1s
\frj1e
p{17
1a
13

If r.seq =
begin

ToHost(r.info), f

inc { FrameExpected) [n

lack mimplies n = |, » -
while berween (Ack Expe
begin
nbuflered .= nbutle
Stop Timer (AckExpe
ime { Ack Expected)

end
end.

ChsumErr: |

ThneOur

begin
NextFrame ToSend = Ak
for i == 1 to mbuffercd do

if wbuffered < MaxSey then Ef*3
until doomsday
end; |protacals]

Fig. 4-10. A sliding win

/* parti;

/* outgoi

Out {Next Frame
inc N

(FrameExp

S* dincop

S gt 5
/* retransmis
Ack

byta }:

f* atarea oo

Rassd unreached in proctype p5

OORDINATION PROBLE
- IN

\VIULTIPROCESSING

/* window size ./

1987

1ng channel =y iN
fwa.

(Spin Version 6.4.4 -- 9 July 2015)
+ Partial Order Reduction

Full statespace search for:
never claim
assertion violations
cycle checks
invalid end states

(none specified)

(disabled by -DSAFETY)

State-vector 68 byte, depth reached 813773, errors: 0

6048432 states, stored

3526446 states, matched

9574878 transitions (= stgq
0 atomic steps

a=d+matched)

Stats on memory usage (in]
647.061 mMemory usage

tanen5:50, state 36,
(1 of 36 states)

the present

elapsed time 4.5 seconds

pan:
rate 1,344,096 states/second

pan:

present and future

* 5o, today we can verify problems
from 1981 just fine...
 but what about the continuing increase
in complexity?
= jssues that remain:

- efficiency & scaling

= algorithms, data structures,
adaption to cloud computing

* expressiveness & ease of use WL

how fundamental is all this?
the parts of a logic model checker

Front-end : Specification : Search : Storage
[[[
C /Java [[[
converter I I I
[i

GUI lex/yacc storage

I
I
| exact
I
I

specification error local compressed

languages & reporting e ——» red/back tree

logics cloud hash-compact
GPU

bloom filter

automata theoretic verification

dfs, bfs, ndfs local
sequential distributed
parallel search & storage cloud
bounded core/disk
heuristic) lossy/exact
randomized algorithms & hash functions

data structures

finite-automata
w-automata

propositional &
linear temporal logic
branching time logic

automata & logic

Languages
Specifications

formal methods = computer science
(logic +
data structures +
algorithms)

+ the chance to work on some really
im nt problems
coo]

